Organic : Prof Nalin Pant Minor I \& II
(i) ganic Cheminy.

AKG

$1+7$ magnetism.
(ii) Organometallics: EAN rule, metal carbonyls - synthesis, bonding and structure, metallocenes - synthesis and properties, Homogenfō Sing frogeneous catalysis.
(iii) Bioinorganic chemistry: Metalloporphyrins, metalloproteins, hemoglobin and myoglobin - structure and function.

(all lectures till from September 19 to October 17, 2012)

MS-709, TEL: 1511; email : ashok@chemistry.iitd.ac.in

October 18 to Nov 16 : Prof J D Singh

Quiz (october)
 Major Exam : AKG \& JDS (inorganic)

A K Ganguli (ashok@chemistry.iitd.ac.in), MS-709, Tel :1511

1. Transition metal complexes - REVISION of Nomenclature, Isomerism and valence bond theory 1
2. CRYSTAL FIELD Theory 7

Magnetic / optical properties of complexes
Structural distortion in metal complexes
3. Introduction to Inorganic Solids

Books Recommended

1. James E. HuHeey

Inorganic chemistry
2. F. A. Cotton, G. Willkinsion and P. L. Gaus

Basic Inorganic Chemistry, J. Wiley and sons (1995) - Singapore
3. Shriver and Atkins : Inorganic Chemistry
(my part)

Quiz
Major
(10 marks; 30 min)
(20 marks; 1 hr)

Why Study Inorganic Chemistry??

Intellectual Pursuit

Practical Impact

1. Eight out top ten chemicals are Inorganic. $\left(\mathbf{H}_{\mathbf{2}} \mathbf{S O}_{4}\right)$ max tonnage
2. Inorganic Materials
(Semi conductors, Light guides on linear optical materials, super conductors) GaAs, KTaO3, LiNbO3, YBa2Cu3O7

Dupont, Monsanto, Dow Chemicals, Hercules, Baeyer, Unilever - Top Chemical Companies

Ce^{58}	$\underset{140.91}{\mathrm{Pr}}$	$\begin{array}{\|c} 60 \\ \mathrm{Nd} \end{array}$	Pm	Sm	Eu	Gd^{64}	$\begin{gathered} \mathbf{c}_{15893}^{65} \\ \hline{ }_{15} \end{gathered}$	Dy	Ho	Er	Tm	Yb	Lu^{71}
	$\begin{aligned} & 91 \\ & \mathrm{~Pa} \end{aligned}$	U^{92}	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	

ATOMIC ORBITALS


```
H\psi = E \Psi
\Psi=R(r)\Theta(0,\varphi)
n=1,2,3,\ldots.....
l = 0 to n-1
                                    Quantum numbers
    For n=1,l=0 1s sub shell
    For n=2, I = 0, 1
    I=0 2s sub shell
    I=1 2p sub shell
M}=-l to +l.
example }\mp@subsup{Y}{-1}{1}(0,\phi)=(1/2)(\sqrt{}{}3/\sqrt{}{}2\pi)(\operatorname{sin}0)\mp@subsup{e}{}{-i\phi}
M
```

(ran

Transition Metal Complexes

Transition Metal?
Elements having partial filled ' d ' or ' f ' shell in any of their commonly occurring oxidation states.

Fe, Co, Ni, Cu, Ag, Au etc
d - block transition metals.
f -block (inner) transition metals (Lanthanides and actinides)

Metals, variable oxidation states, hard, high melting point

Transition metal complexes / Coordination Compounds

A central atom, ion surrounded by anions or neutral molecules, which are Lewis bases and may be monoatomic or polyatomic, neutral or anionic (ligands) are coordination compounds.

Ligand: Lewis base bonded (coordinated) to a metal ion in a coordination compound.

Monodentate, bidentate

Lewis base

Coordination compounds on dissolution give rise to complex ions (complexes)
[Retains the identity in solution]

$$
\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3} \longrightarrow\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}+3 \mathrm{Cl}^{-}
$$

Coordination compound
Complex ion

How Complexes differ from Double salts??

Double salts on dissolution in water lose their identity

$\mathrm{K}_{2} \mathrm{SO}_{4} \cdot \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} .24 \mathrm{H}_{2} \mathrm{O}$ (Alum) $\xrightarrow{\text { Dissolve in water }} \mathrm{K}^{+}, \mathrm{Al}^{3+}, \mathrm{SO}^{2-}$	
	No complex ion

Complex ions don't lose their identity on dissolution

$$
\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3} \xrightarrow{\text { Dissolve in water }} \xrightarrow{\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}+3 \mathrm{Cl}^{-}} \begin{aligned}
& \text { Complex ion }
\end{aligned}
$$

S. M. Jorgensen (1837-1914)
A. Werner (1866-1919) $\}$ $1^{\text {st }}$ Nobel prize in Inorganic chemistry (1913) : Werner

$$
\mathrm{CoCl}_{3}-\mathrm{NH}_{3} \text { Complexes }
$$

compound	Colour	Moles of AgCl	Werner's formula
$\mathrm{CoCl}_{3} \cdot 6 \mathrm{NH}_{3}$	Yellow	3	$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
$\mathrm{CoCl}_{3} \cdot 5 \mathrm{NH}_{3}$	Purple	2	$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
$\mathrm{CoCl}_{3} \cdot 4 \mathrm{NH}_{3}$	Green	1	$\left.\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}\right]_{2}\right] \mathrm{Cl}$

Werner's main Study

Primary Valencies

$$
\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}+3 \mathrm{AgNO}_{3} \longrightarrow 3 \mathrm{AgCl} \downarrow+\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}{ }^{3+}
$$

Secondary Valencies
Normally fixed for a particular ion and oxidation state.

$\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{SO}_{4}$

Coordination number is 6 (secondary valency)
$\begin{array}{lll}\mathrm{Mn}^{2+} & \square & \text { Central metal ion (lewis acid) } \\ \mathrm{H}_{2} \mathrm{O} & - & \text { Ligand (Lewis base) }\end{array}$

Types of Ligands

Monodentate ligands
Donate one pair of electrons to a central metal ion.
e.g. $\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}$

Bidentate ligands
They have two donor atoms

More Examples

Glycinato (gly)

Iminodiacetato (imda)

Triethylenetetramine (tren)

bidentate

$$
\longleftarrow \mathrm{NH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}-\underset{\text { । }}{\mathrm{CH}_{2}}
$$

$$
\longleftarrow \mathrm{NH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}-\mathrm{CH}_{2}
$$

$$
\text { tetradentate } \downarrow
$$

Ethylenediamine
tetraacetate (edta)

Ambidentate Ligands

$$
\left(\begin{array}{c}
\longleftarrow \mathrm{O}-\mathrm{N}=\mathrm{O} \\
\text { nitrito }
\end{array}\right.
$$

Organic Ligands

2, 2'-Bipyridine (bpy)

1,10 - Phenanthroline (phen)

Alkyl groups as ligands

$$
\mathrm{CH}_{3} \text { (methyl), } \mathrm{CH}_{3} \mathrm{CH}_{2} \text { (ethyl), } \mathrm{C}_{6} \mathrm{H}_{5} \text { (Phenyl) }
$$

Macrocyclic ligands

tetradentate

Porphyrin

Nomenclature of Transition metal Compounds

A. Writing the name of the complex compound

1. Designation of ligands
(a) Anionic ligands end with ' 0 '

NO_{2}^{-}	nitro,	CN^{-}	cyano
Cl^{-}	chloro,	NO_{3}^{-}	nitrato

(b) Organic ligands retained their names

Pyridine (py) or ethylenediamine (en) alkyl groups: methyl, phenyl
(c) Special names
$\mathrm{H}_{2} \mathrm{O}$ (aqua), NO (nitrosyl), CO (carbonyl), NH_{3} (ammine)
2. Designation of metal
(a) Cationic and neutral complexes end in the english name followed by the oxidation state of the metal in brackets. e.g. nickel(II) or iron(II).
(b) Anionic complexes have the latin name of the metal

ferrate(),	Stannate ()
Cuprate (),	Argentate ()

3. Numerical prefixes
(a) For two similar ligands di or bis
(b) three similar ligands tri or tris
(c) four similar ligands tetra or tetrakis etc.
4. Order of listing

The ligands are to be written in alphabetical order (irrespective of charge)

$$
\begin{array}{cc}
\text { eg. }\left[\mathrm{CoCl}_{2}\left(\mathrm{NH}_{4}\right)\right]^{+} \mathrm{Cl}^{-} \\
\text {diichlorotetraamminecobalt(III) chloride. wrong } \\
\text { tetraamminedichlorocobalt(III) chloride. right }
\end{array}
$$

A. Writing the formulae of the complex compound

1. First central metal atom, then anionic ligands and then neutral ligands $\left(\mathrm{Cl}^{-}, \mathrm{NH}_{3}\right)$
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$ wrong
$\left[\mathrm{CoCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}$ correct

Examples

1. $\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right] \mathrm{Cl}_{3}$
hexanitro cobalt (III) chloride
2. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$
tetra amminecopper(II)sulphate
3. $\left[\mathrm{CuCl}_{2}(\mathbf{p y})_{2}\right]$
bis pyrridinedichlorocopper(II)
dichloro@yipyridine copper (II)
dichloro bis (pyridine) copper (II)
4. $\mathbf{c i s}-\left[\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
cis-diamminedichloroplatinum(II)

Geometry of complexes

Coordination No. 2
(linear)
[NC---Ag---CN]
$\mathrm{CH}_{3}----\mathrm{Hg}----\mathrm{CH}_{3}$

Coordination no. 4 (large ligands)
(a) Square planar
(b) Tetra hedral

$\left[\mathrm{Ni}(\mathrm{CN})_{5}\right]^{2-}$ shows both structures (little energy differenc)

$\left[\mathrm{CuCl}_{5}\right]^{3+}$	TBP structure
NbCl_{5}	TBP structure

Biologically important molecules
Haemoglobin, Oxomyoglobin

Coordination no. 6
ML_{6} octahedral
complex

Most important from d ${ }^{\mathbf{1}}$ to $\mathbf{d}^{\mathbf{9}}$
e. g. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}, \quad\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$

Higher coordination possible with large cations and small anions
e.g. $\left[\mathrm{ZrF}_{7}\right]^{3-}, \mathrm{TaCl}_{4}\left(\mathrm{PR}_{3}\right)_{3}$
$\left[\mathrm{Nd}\left(\mathrm{OH}_{2}\right)_{9}\right]^{3+},\left[\mathrm{ReH}_{9}\right]^{2-},\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}\right]^{2-}$

Square antiprism
icosahedron

Isomerism

Stereoisomerism

Geometrical
(Same frame work
but different spatial arrangement of the ligands)

Optical

(non-superimposable mirror images)

Structural Isomerism
ronization
Hydrate
Coordination
Linkage
Polymerization
Ligand isomer

Geometrical Isomers (coordination no. 4) A

Square planar

trans
tetrahedral

Cis/ trans isomers can be isolated

Geometrical Isomerism in Octahedral complexes

$\mathbf{M A}_{3} \mathbf{B}_{3}$

Facial

$\mathrm{MA}_{2} \mathrm{~B}_{4}$
cis

e.g. $\left.\left[\mathrm{Co} \mathrm{Cl} \mathbf{C H}_{3}\right)_{4}\right]+$

Optical isomerism

Optical isomers differ only in the direction in which they rotate the plane of the plane polarized light (enantiomers).

Absence of optical activity
(superimposable mirror images)

1. Presence of a mirror plane.
2. Presence of a centre of symmetry.

Trans
$\left[\mathrm{CoCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+}$ Optically inactive

Cis

Bonding Concept (Rationalise structure)

Bonding in coordination compounds
Sidgwick (1927)
$>$ Extended the Lewis theory
$>$ Sharing of 'e' pair donated by an atom (donor).

Effective atomic Number (EAN)

M accepts electron pairs and converted into inert gas configuration.

$$
\begin{aligned}
& \text { e.g. }\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]^{3-} \quad \mathrm{Co} \quad(\mathrm{Z}=27) \\
& \mathrm{Co}^{3+}=24 \mathrm{e} \\
& 6\left(\mathrm{NO}_{2}\right)^{-}=6 * 2 \mathrm{e}=12 \mathrm{e} \\
& \text { TOTAL }=36 \mathrm{e} \text { Atomic no. of Krypton (Kr) }
\end{aligned}
$$

Chemical Bonding

G. N. Lewis (1916)

Bonding between atoms \longrightarrow Sharing of $e^{-’ s}$

H

Structure ??
Bond angles ??

Valence bond Theory
(Pauling - Slater, 1930's)
Linus Pauling - N.L. (twice)
" Nature of the chemical bond"

Valence bond Theory

(Pauling) - Complexes

1. Metal ion must make available a number of orbitals equal to the coordination number for accommodating the electrons from the ligands.
2. Use of the hybrid orbitals by the metal ion.
> Maximum \& fruitful overlap with ligand orbitals
> Directionality

Note: Hybrid orbitals are not s, p or d orbitals but have a mixed character.

Why Hybridisation?

C $\quad 1 s^{2} 2 s^{2} 2 p^{2}$
Promotion of one s electron

$$
1 s^{2} 2 s^{2} 2 p_{x}{ }^{1} 2 p_{y}{ }^{1} 2 p_{y}{ }^{1}
$$

Results in three mutually perpendicular bonds.

All $\angle \mathrm{HCH}$ are equal

Successes of V. B. T.

1. Simple structure and Magnetic properties are nicely explained.
2. Accounts for low spin square planer and high tetrahedral complex.
3. Low spin inner - orbital and high spin orbital complexes.

Failures

1. Cannot predict 4 - coordination

- square planer or tetrahedral
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
$\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
(planar)
(tetrahedral)

But by experiments there is no evidence of unpaired e- in orbital: e. s. r spectroscopy
2. VBT does not predict any distortion in the symmetrical complexes. [ideal - octahedra, tetrahedra]
$\mathrm{Au}, \mathrm{Cu}(\mathrm{II}), \mathrm{Ti}(\mathrm{III})$ complexes are distiorted among many more.
3. VBT neglects the exited states of the complexes.
-no thermodynamic properties can be predicted
4. It does not explain the colour (spectra) of complexes.
5. Does not explain the temperature variation of magnetic properties of complexes.

